
How To Create Your Own
Mini-Robot

1.Building the Robot:
Robot Items & Parts:

In order to create your very own mini robot you will need the following parts and
pieces that are listed below:

● Wheels (x2)

● Robot Frame

● Batteries (x2)

● Battery Holder

● Motors (x2)

● Raspberry Pi

● Bread Board

● Motor Driver Controller Board

● Ultrasonic sensor

● Raspberry Pi camera V2

● Placeholder

Getting Your Build On:
Now that you have acquired all of the items listed above (hopefully) you can now

start building your robot. HOORAY! For starters, you should attach the motors to the
robot frame. Place one in each hole on both sides of the robot. After you have managed
to stick the motors on the frame you should next connect the wheels to the motors as
well. One wheel for each side. Afterward, place your Raspberry Pi on the holder that
should be located on top of the frame. If you have managed to do all of this then you will

have created the main outline for your mini robot and you can now continue to begin
wiring everything up.

2. Wiring The Robot:
Wires:​ ​Now you may be thinking, “Wow, I have all these pieces but how do they work
together to move my robot?”. Well, To answer your question we will have to use these
magical items called wires. Wires can basically connect to anything (that is electronic of
course) and help allow two different devices ​get....​from each other. Knowing this you
may have figured out that we will probably have to use a variety of wires in order to
connect all these devices together. Don’t get overwhelmed by the number of different
wires that are needed to attach all the devices together because we will explain them
piece by piece.

Moving Motors:​ ​So to begin we will teach you how to wire the motors together
using the Motor Driver Controller Board. You may use the diagram below as a
reference when wiring this. Anyway, to start you will need to place ​two.... ​attached to
the motors into the Motor A and Motor B outlet MDCB (Motor Driver Controller Board).
Afterward, connect the ​red....​ to the ​…..

● First, you need to connect a keyboard and mouse to the Pi using the USB

ports on the Pi.
● You also need to connect the Raspberry Pi to the monitor with an HDMI cable.
● To power the Pi you need to connect a micro USB cord into the Pi in the

designated spot then plug the other side into an outlet.

LED SetUp:​ To use LEDs with the Pi, you will need a breadboard along with
resistors, the Pi itself, and of course, the LEDs.
Below is some sample C++ code to run the LEDs. This code would be put in the same file as
your Python code:

import RPi.GPIO as
GPIO import time
GPIO.setmode(GPIO.BOARD)
GPIO.setup(7,GPIO.OUT)

GPIO.setup(11,GPIO.OUT)
GPIO.setup(13,GPIO.OUT)
GPIO.setup(15,GPIO.OUT)
GPIO.output(7,True)
time.sleep(1)
GPIO.output(7,False)
GPIO.output(11,True)
time.sleep(1)
GPIO.output(11,False)
GPIO.output(13,True)
time.sleep(1)
GPIO.output(13,False)
GPIO.output(15,True)
time.sleep(1)
GPIO.output(15,False)
GPIO.cleanup()

LED Lights Wiring: ​You will have to connect the pins with the holes in the breadboard
using jumpers. Use the six pin to connect resistors to each of the lights. Then use jumpers to
connect the breadboard to the GPIO pins on the Pi.

Motor Wiring: ​In the picture below, pins 7 and 11 control motor A, and pins 13 and 15
control motor B. Pin 6 is the power/battery connection. So 15, 7, 11, and 13 all connect into the
control inputs on the H-Bridge.

Ultrasonic Sensor:
def

ultrasonic​()
:

#Gnd wire (Green)connects to breadboard/ connects to wire (Black)14

GPIO​.output(​TRIG​, ​True​) ​#Set TRIG as HIGH

time.sleep(​0.00001​) ​#Delay of 0.00001

seconds ​
GPIO​.output(​TRIG​, ​False​) ​#Set TRIG as LOW

Camera code:
while ​GPIO​.input(​ECHO​)​==​0​: ​#Check whether the

ECHO is LOW ​
pulse_start ​= ​time.time() ​#Saves the last

known time of LOW pulse

while ​GPIO​.input(​ECHO​)​==​1​: ​#Check whether the

ECHO is HIGH ​
pulse_end ​= ​time.time() ​#Saves the last

known time of HIGH pulse

pulse_duration ​= ​pulse_end ​- ​pulse_start ​#Get pulse duration to

a variable

distance ​= ​pulse_duration ​* ​17150 ​#Multiply pulse

duration by 17150 to get distance

distance ​= ​round​(distance, ​2​) ​#Round to two decimal

points ​
return​(distance)​;

uses the ultrasonic sensor to shoot out a sonic pulse then receive

the pulse to tell the distance between the robot and the object in the way.

3.Coding the Robot
The Code

Line 1:​ Sets up the keyboard,
GPIO, And time for later use in the
code
Lines 2-4:​ defines values for Echo
and Trig for sonar
Lines 5-10:​ sets up GPIO board to
power the motors

Lines 11-18:​ sets up the Sonar
Gpio slots

Lines 19-20:​ Shuts off GPIO so the
motors don’t start on

Lines 22-26:​ defines the camera
ON function

Lines 28-30:​ defines the camera
OFF function

Lines 32-47:​ defines sonar function

1. import keyboard, RPi.GPIO as GPIO, time
2. TRIG = 16
3. ECHO = 18
4. GPIO.setmode(GPIO.BOARD)
5. GPIO.setup(7,GPIO.OUT)
6. GPIO.setup(11,GPIO.OUT)
7. GPIO.setup(13,GPIO.OUT)
8. GPIO.setup(15,GPIO.OUT)
9. GPIO.setup(TRIG,GPIO.OUT)
10.GPIO.setup(ECHO,GPIO.IN)
11.pwm7 = GPIO.PWM(7, 60)
12.pwm11 = GPIO.PWM(11, 60)
13.pwm15 = GPIO.PWM(15, 60)
14.pwm7.start(0)
15.pwm11.start(0)
16.pwm13.start(0)
17.pwm15.start(0)
18.dutyCycle = 30
19.GPIO.output(TRIG, False)
20. time.sleep(2)
21.
22.def camON ():
23. camera = picamera.PiCamera()
24. camera.start_preview()
25. camera.resolution = (1296, 730)
26. camera.start_recording('my_video.h264')
27.
28.def camOFF ():
29. camera.stop_recording()
30. camera.stop_preview()
31.
32.def sonar ():
33. GPIO.output(TRIG, True)
34. time.sleep(0.00001)

Lines 49-54:​ defines backward
functions

Lines 56-61:​ defines forwards
function

Lines 63-74:​ Defines left turn
function (Note that the turn has two
settings for higher and lower
speeds)

35. GPIO.output(TRIG, False)
36.
37. while GPIO.input(ECHO)==0:
38. pulse_start = time.time()
39.
40. while GPIO.input(ECHO)==1:
41. pulse_end = time.time()
42.
43. pulse_duration = pulse_end - pulse_start
44.
45. distance = pulse_duration * 17150
46. distance = round(distance, 2)
47. return(distance);
48.
49.def backwards (int):
50. pwm7.ChangeDutyCycle(dutyCycle)
51. pwm11.ChangeDutyCycle(0)
52. pwm13.ChangeDutyCycle(dutyCycle)
53. pwm15.ChangeDutyCycle(0)
54. return;
55.
56.def forward (int):
57. pwm7.ChangeDutyCycle(0)
58. pwm11.ChangeDutyCycle(dutyCycle)
59. pwm13.ChangeDutyCycle(0)
60. pwm15.ChangeDutyCycle(dutyCycle)
61. return;
62.
63.def turnleft (int):
64. if dutyCycle > 50:
65. pwm7.ChangeDutyCycle(0)
66. pwm11.ChangeDutyCycle(dutyCycle / 4)
67. pwm13.ChangeDutyCycle(0)
68. pwm15.ChangeDutyCycle(dutyCycle)
69. elif dutyCycle <= 50:
70. pwm7.ChangeDutyCycle(dutyCycle)
71. pwm11.ChangeDutyCycle(0)
72. pwm13.ChangeDutyCycle(0)

Lines 76-87:​ Defines right turn
function (Again note that the turn
has two settings for higher and
lower speeds)

Lines 89-94:​ Defines stop function

Lines 96-97:​ Starts active code

Lines 98-99:​ Does a sort of
emergency shutdown when Q is
pressed

Lines 101-102:​ Activates sonar
function

Lines 104-119:​ Takes the output of
sonar function and goes forward,
backward, or turns left depending
on how close an obstacle is (note
this basically makes the robot go
forward unless it sees a wall) when
W is pressed

73. pwm15.ChangeDutyCycle(dutyCycle)
74. return;
75.
76.def turnright (int):
77. if dutyCycle > 50:
78. pwm7.ChangeDutyCycle(0)
79. pwm11.ChangeDutyCycle(dutyCycle)
80. pwm13.ChangeDutyCycle(0)
81. pwm15.ChangeDutyCycle(dutyCycle / 4)
82. elif dutyCycle <= 50:
83. pwm7.ChangeDutyCycle(0)
84. pwm11.ChangeDutyCycle(dutyCycle)
85. pwm13.ChangeDutyCycle(dutyCycle)
86. pwm15.ChangeDutyCycle(0)
87. return;
88.
89.def stopped (int):
90. pwm7.ChangeDutyCycle(0)
91. pwm11.ChangeDutyCycle(0)
92. pwm13.ChangeDutyCycle(0)
93. pwm15.ChangeDutyCycle(0)
94. return;
95.
96. try:
97. while True:
98. if keyboard.is_pressed('q'):
99. break
100.
101. while keyboard.is_pressed('w'):
102. test = sonar()
103.
104. if test < 15:
105. backwards(dutyCycle)
106. elif test <= 25:
107. turnleft(dutyCycle)
108. elif test > 25:
109. forward(dutyCycle)
110.

Lines 111-112:​ Starts the backward
function when S is pressed

Lines 114-115:​ Starts the right turn
function when D is pressed

Lines 117-118:​ Starts the left turn
function when A is pressed

Lines 120-124:​ Takes power from
motors when no keys are pressed

Lines 126-127:​ Starts recording
when V is pressed

Lines 129-130:​ Stops recording
when C is pressed

Lines 132-160: ​Sets Motor power to
a percentage when the
corresponding key is pressed ex.
Power set to 70% when 7 is
pressed

111. while keyboard.is_pressed('s'):
112. backwards(dutyCycle)
113.
114. while keyboard.is_pressed('d'):
115. turnright(dutyCycle)
116.
117. while keyboard.is_pressed('a'):
118. turnleft(dutyCycle)
119.
120. if keyboard.is_pressed('w') == False:
121. pwm7.ChangeDutyCycle(0)
122. pwm11.ChangeDutyCycle(0)
123. pwm13.ChangeDutyCycle(0)
124. pwm15.ChangeDutyCycle(0)
125.
126. ​ if keyboard.is_pressed('c')
127. camON ()
128.
129. ​if keyboard.is_pressed('v')
130. camOFF ()
131.
132. ​ if keyboard.is_pressed('1'):
133. dutyCycle = 10
134.
135. elif keyboard.is_pressed('2'):
136. dutyCycle = 20
137.
138. elif keyboard.is_pressed('3'):
139. dutyCycle = 30
140.
141. elif keyboard.is_pressed('4'):
142. dutyCycle = 40
143.
144. elif keyboard.is_pressed('5'):
145. dutyCycle = 50
146.
147. elif keyboard.is_pressed('6'):
148. dutyCycle = 60

162-163:​ Shuts down the code and
cuts power to GPIO

149.
150. elif keyboard.is_pressed('7'):
151. dutyCycle = 70
152.
153. elif keyboard.is_pressed('8'):
154. dutyCycle = 80
155.
156. elif keyboard.is_pressed('9'):
157. dutyCycle = 90
158.
159. elif keyboard.is_pressed('0'):
160. dutyCycle = 100
161.
162. finally:
163. GPIO.cleanup()

Credits:

● https://www.explainingcomputers.com/rasp_pi_robotics.html
● https://github.com/frc2052/MiniRobot/blob/648cbad5f78a3bc5750277e9dd4426d8176b6

39f/camera.py

https://www.explainingcomputers.com/rasp_pi_robotics.html
https://github.com/frc2052/MiniRobot/blob/648cbad5f78a3bc5750277e9dd4426d8176b639f/camera.py
https://github.com/frc2052/MiniRobot/blob/648cbad5f78a3bc5750277e9dd4426d8176b639f/camera.py

